

Serie 10 - Solution

Given constants

$$\epsilon_0 = 8.85 \cdot 10^{-14} [F/cm]$$

$$\epsilon_{ox} = 3.9 \cdot \epsilon_0$$

Exercise 01

Consider a MOS transistor polarized as in Figure 1. We know: $V_{th} = 0.7$ [V], $W = 10$ [μm], $L = 0.5$ [μm], $t_{ox} = 20$ [nm]. When the circuit is polarized with $V_{DD} = 3.3$ [V], the current flowing through the channel of the transistor is $I_D = 0.5$ [mA].

The value of electron mobility, μ_n , in the inversion channel of the MOS transistor is:

- a) ~ 250 [$cm^2 V^{-1} s^{-1}$]
- b) ~ 500 [$cm^2 V^{-1} s^{-1}$]
- c) ~ 750 [$cm^2 V^{-1} s^{-1}$]

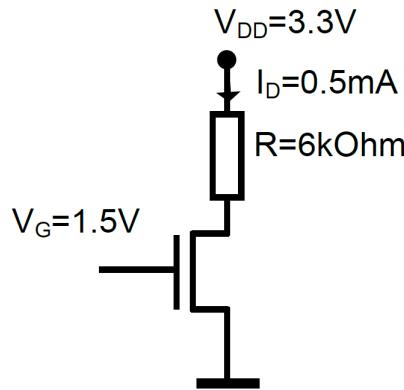


Figure 1: MOS transistor circuit.

We begin by calculating the voltage drop across the resistor and across the transistor:

$$V_R = R \cdot I_D = 0.5 \cdot 10^{-3} \cdot 6 \cdot 10^3 = 3 \text{ [V]} \quad (1)$$

$$V_{DS} = V_{DD} - V_R = 0.3 \text{ [V]} \quad (2)$$

Since we have:

- $V_{GS} - V_{th} = 0.8 \text{ [V]} \Rightarrow V_{GS} > V_{th}$

- $V_{DS} < V_{GS} - V_{th} \Rightarrow V_{GD} > V_{th}$

the transistor is in the **linear region**. Thus, the drain current is expressed as:

$$I_D = \frac{W}{L} \mu_n C_{ox} \left(V_{GS} - V_{th} - \frac{V_{DS}}{2} \right) V_{DS} \quad (3)$$

We first need to compute the oxide capacitance:

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{3.9 \cdot 8.85 \cdot 10^{-14}}{20 \cdot 10^{-7}} = 1.7 \cdot 10^{-7} \text{ [F/cm}^2\text{]} \quad (4)$$

Finally, we can calculate the mobility:

$$\begin{aligned} \mu_n &= \frac{I_D}{\frac{W}{L} C_{ox} \left(V_{GS} - V_{th} - \frac{V_{DS}}{2} \right) V_{DS}} \\ &= \frac{0.5 \cdot 10^{-3}}{\frac{10}{0.5} \cdot 1.7 \cdot 10^{-7} (1.5 - 0.7 - 0.15) \cdot 0.3} = 754 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}\text{]} \end{aligned} \quad (5)$$

The correct answer, then, is answer c.

Exercise 02

Consider a n-MOSFET on a p-type Si substrate. We know: $W = 10 \text{ [\mu m]}$, $L = 1 \text{ [\mu m]}$, $t_{ox} = 5 \text{ [nm]}$. The measured transistor characteristics are shown in Figure 2. For Fig. 2a, $g_m = 1.4 \cdot 10^{-4} \text{ [A/V]}$; for Fig. 2b, we don't know the scale of the axes.

Q1. By looking at the $I_D - V_G$ characteristics, we can conclude that at $V_G = 0.8 \text{ [V]}$ the MOSFET is in:

- a) Saturation region.
- b) Linear region.
- c) Cut-off region.

Sol: b) Linear region, since $V_{GS} > V_{th}$ and $V_{DS} < V_{GS} - V_{th}$.

Q2. The threshold voltage V_{th} of the MOSFET is:

- a) $V_{th} = 0.1 \text{ [V]}$
- b) $V_{th} = 0.2 \text{ [V]}$
- c) $V_{th} = 0.4 \text{ [V]}$
- d) $V_{th} = 1 \text{ [V]}$

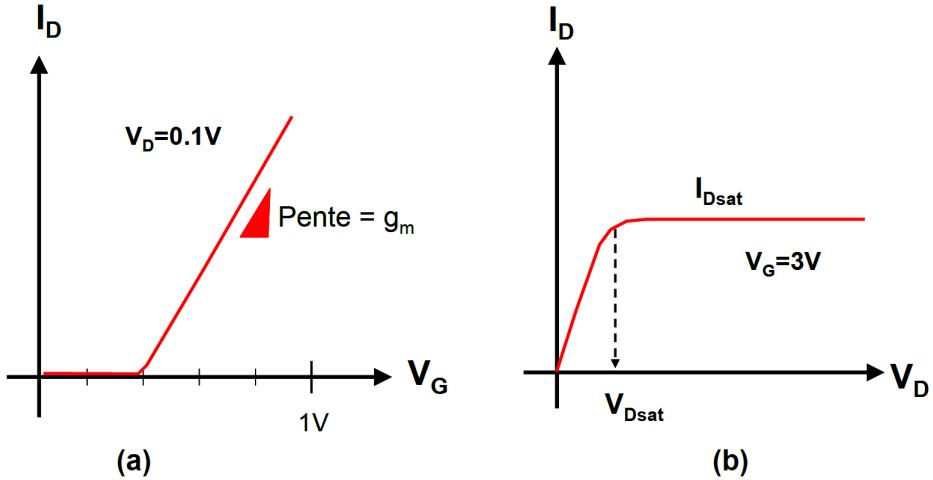


Figure 2: MOSFET characteristics.

Sol: c) By looking at the x-axis marks of Fig. 2a.

Q3. The mobility μ_n of the electrons in the n-channel is:

- a) $\sim 200 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}]$
- b) $\sim 300 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}]$
- c) $\sim 400 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}]$
- d) $\sim 500 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}]$
- e) $\sim 600 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}]$

Sol: a) In the linear region, $I_D = \frac{W}{L} \mu_n C_{ox} V_{DS} (V_{GS} - V_{th} - \frac{V_{DS}}{2})$, where $g_m = \frac{\partial I_D}{\partial V_{GS}} = \frac{W}{L} \mu_n C_{ox} V_{DS}$. Upon calculation, we obtain $\mu_n = 203 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}]$.

Q4. For $V_G = 3 \text{ [V]}$, the saturation voltage V_{Dsat} is:

- a) $V_{Dsat} = 2.9 \text{ [V]}$
- b) $V_{Dsat} = 2.8 \text{ [V]}$
- c) $V_{Dsat} = 2.6 \text{ [V]}$
- d) $V_{Dsat} = 2 \text{ [V]}$

Sol: c) V_{Dsat} is defined as $V_{GS} - V_{th} = 2.6 \text{ [V]}$.

Q5. The saturation current I_{Dsat} is:

- a) $I_{Dsat} = 2.1$ [mA]
- b) $I_{Dsat} = 4.7$ [mA]
- c) $I_{Dsat} = 6.8$ [mA]

Sol: b) In the saturation region ($V_{GS} > V_{th}$, $V_{DS} > V_{GS} - V_{th} = V_{Dsat}$), the current is expressed as $I_D = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_{th})^2$. Upon calculation, we obtain $I_{Dsat} = 4.74$ [mA].

Q6. The trend of the $I_D - V_D$ characteristics allows us to conclude that:

- a) This n-MOSFET has a long channel.
- b) This n-MOSFET shows short-channel effects.
- c) We need the $I_D - V_G$ characteristics below threshold, in *log* scale, to determine if there are short-channel effects.

Sol: a) In Fig. 2b, the saturation current is constant, meaning that the transistor is not affected by channel length modulation. Therefore, the transistor is likely to be a long-channel MOSFET.

Exercise 03

Choose the correct statements regarding MOS transistors on fully-depleted silicon-on-insulator (FD-SOI) substrates:

- A) The depth of the depletion region controlled by the gate is thinner than the thickness of the Si film of the SOI.
- B) The junction leakage currents in FD-SOI are smaller than for MOS transistor on bulk Si, for the same technological node (channel length).
- C) A kink effect in the $I_D - V_D$ characteristics exists, where the drain current shows an unusual increase before the breakdown.
- D) The FD-SOI shows a better resistance to ionizing radiations, with respect to partially-depleted SOI.
- E) FD-SOI transistors show stronger short-channel effects than their counterparts in bulk Si.
- F) The FD-SOI has inherent self-heating effects, because of the buried oxide, which increases the thermal resistance.
- G) For the same channel length, transistors on FD-SOI can operate at higher frequency with respect to those on bulk Si.

Solution: the correct statements are **B**, **D**, **F**, and **G**.